A pr 2 00 4 CONVEX SOLUTIONS TO THE MEAN CURVATURE FLOW

نویسنده

  • Xu - Jia Wang
چکیده

In this paper we study the classification of ancient convex solutions to the mean curvature flow in R n+1. An open problem related to the classification of type II singularities is whether a convex translating solution is k-rotationally symmetric for some integer 2 ≤ k ≤ n, namely whether its level set is a sphere or cylinder S k−1 × R n−k. In this paper we give an affirmative answer for entire solutions in dimension 2. In high dimensions we prove that there exist non-rotationally symmetric, entire convex translating solutions, but the blow-down in space of any entire convex translating solution is k-rotationally symmetric. We also prove that the blow-down in space-time of an ancient convex solution which sweeps the whole space R n+1 is a shrinking sphere or cylinder.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex solutions to the power - of - mean curvature flow , conformally invariant inequalities and regularity results in some applications of optimal transportation

Convex solutions to the power-of-mean curvature flow, conformally invariant inequalities and regularity results in some applications of optimal transportation Shibing Chen Doctor of Philosophy Graduate Department of Mathematics University of Toronto 2012 In this thesis we study three different problems: convex ancient solutions to the power-ofmean curvature flow; Sharp inequalities; regularity ...

متن کامل

Singularity Behavior of the Mean Curvature Flow

It was proved that a blow-up solution to the mean curvature flow with positive mean curvature is an ancient convex solution, that is a convex solution which exists for time t from −∞. In this paper we study the geometry of ancient convex solutions. Our main results are contained in Theorems 1-3 below. Theorem 1 asserts that after normalization, the solution converges to a sphere or cylinder as ...

متن کامل

Non-collapsing in Mean-convex Mean Curvature Flow

We provide a direct proof of a non-collapsing estimate for compact hypersurfaces with positive mean curvature moving under the mean curvature flow: Precisely, if every point on the initial hypersurface admits an interior sphere with radius inversely proportional to the mean curvature at that point, then this remains true for all positive times in the interval of existence. We follow [4] in defi...

متن کامل

Existence and Regularity for the Generalized Mean Curvature Flow Equations

X iv :0 90 8. 30 57 v1 [ m at h. A P] 2 1 A ug 2 00 9 EXISTENCE AND REGULARITY FOR THE GENERALIZED MEAN CURVATURE FLOW EQUATIONS RONGLI HUANG AND JIGUANG BAO Abstract. By making use of the approximation method, we obtain the existence and regularity of the viscosity solutions for the generalized mean curvature flow. The asymptotic behavior of the flow is also considered. In particular, the Diri...

متن کامل

Evolution by Non-Convex Functionals

We establish a semi-group solution concept for morphological differential equations, such as the mean curvature flow equation. The proposed method consists in generating flows from generalized minimizers of nonconvex energy functionals. We use relaxation and convexification to define generalized minimizers. The main part of this work consists in verification of the solution concept by comparing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004